前言:出了 4 道密码题 (mxx307yyds),还有两道关于格的,,,不太会 等复现吧
# crypto-polydiv
# 题目
题目描述
多项式乘法,已知
a(x)*b(x)+c(x)=r(x)
,a(x),c(x),r(x)
求 `b (x)可以直接在 sage 上跑
# exp
from pwn import * | |
import string | |
import hashlib | |
table = string.ascii_letters + string.digits | |
re = remote('182.92.222.142',45390) | |
re.recvuntil(b'sha256(XXXX+') | |
x = re.recv(16) | |
re.recvuntil(b') == ') | |
y = re.recv(64) | |
flag = 0 | |
for a in table: | |
if flag:break | |
for b in table: | |
if flag: break | |
for c in table: | |
if flag: break | |
for d in table: | |
z = (a + b + c + d).encode() | |
if hashlib.sha256(z + x).hexdigest() == y.decode(): | |
flag = 1 | |
re.recvuntil(b'Give me XXXX: ') | |
re.sendline(z) | |
break | |
PR.<x> = Zmod(2)[] | |
for i in range(40): | |
re.recvuntil(b'r(x) = ') | |
r = eval(re.recvline()[:-1].decode().replace('^','**')) | |
re.recvuntil(b'a(x) = ') | |
a = eval(re.recvline()[:-1].decode().replace('^','**')) | |
re.recvuntil(b'c(x) = ') | |
c = eval(re.recvline()[:-1].decode().replace('^','**')) | |
re.recvuntil(b'> b(x) = ') | |
b = (r - c) // a | |
# print(f'r = {r}') | |
# print(f'a = {a}') | |
# print(f'c = {c}') | |
# print(f'(r-c)//a') | |
# b = input() | |
re.sendline(str(b).encode()) | |
re.interactive() | |
#flag{6c108498-234f-4626-8319-4aa26dcc1a10} |
# crypto-ASR
# 题目
from Crypto.Util.number import getPrime | |
from secret import falg | |
pad = lambda s:s + bytes([(len(s)-1)%16+1]*((len(s)-1)%16+1)) | |
n = getPrime(128)**2 * getPrime(128)**2 * getPrime(128)**2 * getPrime(128)**2 | |
e = 3 | |
flag = pad(flag) | |
print(flag) | |
assert(len(flag) >= 48) | |
m = int.from_bytes(flag,'big') | |
c = pow(m,e,n) | |
print(f'n = {n}') | |
print(f'e = {e}') | |
print(f'c = {c}') | |
''' | |
n = 8250871280281573979365095715711359115372504458973444367083195431861307534563246537364248104106494598081988216584432003199198805753721448450911308558041115465900179230798939615583517756265557814710419157462721793864532239042758808298575522666358352726060578194045804198551989679722201244547561044646931280001 | |
e = 3 | |
c = 945272793717722090962030960824180726576357481511799904903841312265308706852971155205003971821843069272938250385935597609059700446530436381124650731751982419593070224310399320617914955227288662661442416421725698368791013785074809691867988444306279231013360024747585261790352627234450209996422862329513284149 | |
''' |
4 个因子,因为都是 128 位,yafu 直接分解\sqrt
最后, 有公因子 9 分别来自两个因子;由于 比较小,直接选用另外两个因子做模数就好了
# exp
from gmpy2 import * | |
from Crypto.Util.number import * | |
e = 3 | |
c = 945272793717722090962030960824180726576357481511799904903841312265308706852971155205003971821843069272938250385935597609059700446530436381124650731751982419593070224310399320617914955227288662661442416421725698368791013785074809691867988444306279231013360024747585261790352627234450209996422862329513284149 | |
n = 8250871280281573979365095715711359115372504458973444367083195431861307534563246537364248104106494598081988216584432003199198805753721448450911308558041115465900179230798939615583517756265557814710419157462721793864532239042758808298575522666358352726060578194045804198551989679722201244547561044646931280001 | |
n1 = iroot(n, 2)[0] | |
r1, r2, r3, r4 = [225933944608558304529179430753170813347, 218566259296037866647273372633238739089, 223213222467584072959434495118689164399, 260594583349478633632570848336184053653] | |
phi = r3 * r4 * (r3 - 1) * (r4 - 1) | |
new_n = (r3 * r4) ** 2 | |
d = invert(e, phi) | |
m = long_to_bytes(pow(c, d, new_n)) | |
print(m) | |
# b'flag{Fear_can_hold_you_prisoner_Hope_can_set_you_free}\x06\x06\x06\x06\x06\x06' |
# crypto-myJWT
# 题目
- 考点:CVE-2022-21449
使用的是 ECDSA,虽然是密码题,但并不是对 ECDSA 的签名、验证等步骤操作,这些都由 java 封装好了
所以是 java 的问题
由于代码中使用的格式是 SHA384withECDSAinP1363Format
,经过搜索是 CVE-2022-21449,发现竟然是 java 没有判断 是否等于 0。。。
# exp
这里如何实现将 都赋值为 0?我是直接穿了 0 的 base64 编码但是不对,,,看 CVE 的 demo 是直接喂 \x00
的 base64 编码,不懂为什么,还没深究
from base64 import * | |
from pwn import * | |
io = remote('47.104.76.78', 23334) | |
fake_sig = b'\x00\x00' | |
name = b'4xwi11' | |
io.sendlineafter(b'your name:', name) | |
io.sendlineafter(b'>', b'1') | |
token = io.recvline().decode()[:-1] | |
head, payload, _ = token.split('.') | |
payload = b64decode(payload).replace(b'false', b'true') | |
io.sendlineafter(b'>', b'2') | |
payload_x = head.encode() + b'.' + b64encode(payload) + b'.' + b64encode(fake_sig) | |
io.sendline(payload_x) | |
print(io.recvline()[:-1]) | |
# b'your token:flag{cve-2022-21449_Secur1ty_0f_c0de_1mplementation}' |
# crypto-Factor
# 题目
#encoding:utf-8 | |
from Crypto.Util.number import * | |
from gmpy2 import * | |
from random import randint | |
from flag import flag | |
def gen1(): | |
r = 2 | |
while True: | |
p2 = getPrime(1792) | |
p1 = getPrime(1792) | |
q1 = getPrime(512) | |
q2 = getPrime(512) | |
if (abs(p1-p2) < (p1//(2*r*q1*q2))): | |
n1, n2 = (p1**r)*q1, (p2**r)*q2 | |
break | |
phi1 = (p1**(r-1))*(p1-1)*(q1-1) | |
phi2 = (p2**(r-1))*(p2-1)*(q2-1) | |
while True: | |
e1 = randint(5, (p1-1)*(q1-1)) | |
e2 = randint(5, (p2-1)*(q2-1)) | |
if gcd(e1, e2) == 1 and gcd(phi1, e1) == 1 and gcd(phi2, e2) == 1: | |
break | |
return n11, n12, e11, e12 | |
def gen2(): | |
r = 7 | |
while True: | |
p = getPrime(512) | |
q = getPrime(512) | |
N = (p**r)*q | |
if len(bin(N)) == 4096: | |
break | |
idx = (r*(r-1)) / ((r+1)*(r+1)) | |
delta = int(pow(mpz(N), idx)) | |
phi = (p**(r-1))*(p-1)*(q-1) | |
while True: | |
d1 = getPrime(int(2048*idx)//2) | |
d2 = getPrime(int(2048*idx)//2) | |
if abs(d1-d2) < delta: | |
m1 = invert(d1, phi) | |
m2 = invert(d2, phi) | |
break | |
e2 = 0x10001 | |
return n2, e2, m1, m2 | |
def gen3(): | |
r = 7 | |
while True: | |
p = getPrime(512) | |
q = getPrime(512) | |
N = (p**r)*q | |
phi = (p**(r-1))*(p-1)*(q-1) | |
if len(bin(N))-2 == 4096: | |
break | |
idx = (r*(r-1)) / ((r+1)*(r+1)) | |
delta = int(pow(mpz(N), idx)) | |
while True: | |
b = getRandomNBitInteger(int(2048*idx)//2) | |
a = getRandomNBitInteger(int(2048*idx)//2) | |
if a*b < delta: | |
e = invert(a, phi)*b | |
return n3, e3, b | |
n11, n12, e11, e12 = gen1() | |
print(f"n11={n11}\nn12={n12}\ne11={e11}\ne12={e12}\n") | |
n2, e2, m1, m2 = gen2() | |
print(f"n2={n2}\ne2={e2}\n") | |
n3, e3, b = gen3() | |
print(f"n3={n3}\ne3={e3}\n") | |
m3 = bytes_to_long(flag) | |
c11 = powmod(m1, e11, n11) | |
c12 = powmod(m2, e12, n12) | |
c2 = powmod(b, e2, n2) | |
c3 = powmod(m3, e3, n3) | |
print(f"c11={c11}\nc12={c12}\nc2={c2}\nc3={c3}\n") | |
''' | |
n11=801049932940568005269978912396585741498810389425615966036828877784238116634177290247194019425111606811005728521368879065336038221361037062407029836155148874719789714345603547779284558101833801155509762818376470874215789574939002212274399950433269775325144015468620263028557804618774240232988157961712628677901130814703917513004114547234375629747176834581166306552311075522669403347828095831520693563291249869832390698646691647204371133362254846234990175138047928703289833460734235302093916147489509206061923877623300596194317059884824322527532662470348274079800781120104946546063500763852622187404608639542858285661288293918912184354236687975919510300221932074135531028314170475917110204254042336116619335841213418990605590620842511615815443114612333881430920769002933370887494558640833005339906706603497809846863863967391543647049224309556936909768179259581851520214669904560467640473144481633920438487615788689262961741053146610554997224861331949716721056553499531186695425439163222802917813140266513735841447717418846360096652592844940362932171019143434080184728093326143821165097895058935372215708948088248596585127475770021962501262915274497478428868130455122612016408381607561200802267038869516896665387576895570245272035575637 | |
n12=635401970340205725139325006504978344512744926958688031423448003992072769931808217486709574151492230879374574313457662436423263437792389711379687512056391117410807565492548718691166183372633151644917135272259770997096195518489056319350258673723095417922153182423913759272893696867426193704479752772511081457729513843682588951499551132432923147997238597538055902932123792252593514225328196541483451747314048080824405530742533473914329294346486691684904100406972073037050089861816604505650042953778360621934380815999541183067585498606053857125775979915077329566722531830089714823979965934190338538564188253271016367299890015449611141166780048763403252309160517164569110740561584100839212138661881615351382946813818078899882595313362934594951895560189003438775450675343590147821186953526262224973333962454561275321925151619178204499342339749637758100126893330994252902926509705617882239610380420830791088907378397226817514095468815228186716220057075095711894070032344613244803934541318573847029365563159918970404057137270884587905766828750387753130065274147902379993224780149663600462492281891320702134153853359393588902750423972068679293373333869389393970353760507436913233657422185531482023237384247535554666481760197851108297145147371 | |
e11=1898839980562048754607069073527844852132536432440793106124181406514770178066775988232362054809850074774981836898118651469424148725970708199461113088705044905633592578936333918328544505910996746428679299419879472444790941363558025887620570856598548320246426354974395765243741646121743413447132297230365355148066914830856904433750379114692122900723772114991199979638987571559860550883470977246459523068862898859694461427148626628283198896659337135438506574799585378178678790308410266713256003479022699264568844505977513537013529212961573269494683740987283682608189406719573301573662696753903050991812884192192569737274321828986847640839813424701894578472933385727757445011291134961124822612239865 | |
e12=1262647419018930022617189608995712260095623047273893811529510754596636390255564988827821761126917976430978175522450277907063247981106405519094560616378241247111698915199999363948015703788616554657275147338766805289909261129165025156078136718573006479030827585347458143645738353716189131209398056741864848486818076440355778886993462012533397208330925057305502653219173629466948635110352752162442552541812665607516753186595817376029707777599029040724727499952161261179707271814405907165207904499722122779096230563548011491932378429654764486855147873135769116637484240454596231092684424572258119768093562747249251518965380465994055049411715353547147466711949391814550591591830515262296556050946881 | |
n2=209798341155088334158217087474227805455138848036904381404809759100627849272231840321985747935471287990313456209656625928356468120896887536235496490078123448217785939608443507649096688546074968476040552137270080120417769906047001451239544719039212180059396791491281787790213953488743488306241516010351179070869410418232801398578982244984544906579574766534671056023774009163991804748763929626213884208260660722705479782932001102089367261720194650874553305179520889083170973755913964440175393646890791491057655226024046525748177999422035469428780228224800114202385209306803288475439775037067014297973202621118959024226798935588827359265962780792266516120013602384766460619793738405476219362508944225007365127768741191310079985425349292613888185378948854602285379329682053663283534930182589905986063348509703027498270111412063194971956202729807710253369312175636837558252924035002153389909587349043986253518050303628071319876207392440085675892353421232158925122721273720564784886530611286461575045181073744696415657043278123662980166364494583141297996445429477446442693717498789391918530672770193730629928408766563592081857706608049076318165712479742423149330311238462044666384622153280310696667586565906758451118241914402257039981388209 | |
e2=65537 | |
n3=539779851369541956878655738599584730199799866957191805784596190682932284216781781433367450841202917758999300635019369629627621029957135109806205877317954671312041249493462048283611940752235036153024920172209763260723728345918562258401803973624430150143563078517485996070862532682695228590709019451174548520135142052216785774589096706631010293690859363524584240662502290912412366366114571976050857239915691266377257797199583543940504695517331512813468837128344612227973709974625418257243011036826241599265375741977853552204640800449679679351666009764297016524814036295707311913711955324055690490892097177271718850857268982130811714517356073266905474635370690445031512184247179039751734276906533177939993769044135143389748416635981226449566039039202521305851567296884751935162651063209779647359922622084851547605090230221057349511482738300221222563908357379545905837110168948295030747460300104202323692732549831403834387939156877086852393515817984772384147449841124275061609701453997579569931391166586163299940486204581696722731952467570857217406030804590055255431828403195798003509083922294733709507134156466158642941338493323430671502043066148246348074878064089651235355282144209668143249348243220714471988019011613749340243917652821 | |
e3=8179300978753084587812861894047395225516049110376948812109811319430275614612773726672345893359691900281432484382670047044697374818043512731533402576374645405477207239801498428774783768163880078495448747421425078521981578408638790336528372019271073712013371141939808017049399434858687299480461753638164719404612128939787055797762174745092074547412183349192156638711750872083313795551439465507724807626674514935170104573715458782366469587138508845980490673890245713729782917089910271980557159592807350504157192913530007199510144004848020221181558472160543018733124225266127379373751910439604459368078652499029070936707349862139053913745186413782066470461478961703013591655136140060879250067379283913798867648758171004535775565306842444545755351202796833177560656564652632975685912935281581268141803696686952259539945588609591385807620108279333498170028167338690235117003515264281843953984997958878272347778561933726792473981855755454522886321669676790813189668084373153897754540290867346751033567500922477317530445967753955221454744946208555394588111484610700789566547507402309549957740815535069057837915204852490930168843605732632328017129154852857227895362549146737618906180651623216848500491438142456250653458053922622240299736136335179639180898730269690699965799644757774472147210271111150769048976871249731156387939260749192370361488285775377622944817570292095201906142567403539151179209316853493906909989301225903409448461436855145 | |
c11=18979511327426975645936984732782737165217332092805655747550406443960209507493506811471688957217003792679188427155591583024966608843371190136274378868083075515877811693937328204553788450031542610082653080302874606750443090466407543829279067099563572849101374714795279414177737277837595409805721290786607138569322435729584574023597293220443351227559400618351504654781318871214405850541820427562291662456382362148698864044961814456827646881685994720468255382299912036854657082505810206237294593538092338544641919051145900715456411365065867357857347860000894624247098719102875782712030938806816332901861114078070638796157513248160442185781635520426230183818695937457557248160135402734489627723104008584934936245208116232179751448263136309595931691285743580695792601141363221346329077184688857290503770641398917586422369221744736905117499140140651493031622040723274355292502182795605723573863581253354922291984335841915632076694172921289489383700174864888664946302588049384130628381766560976143458735712162489811693014419190718601945154153130272620025118408017441490090252674737105557818759190934585829634273698371996797545908125156282869589331913665938038870431655063063535672001112420959158339261862052308986374193671007982914711432579 | |
c12=336587005671304527566745948355290412636261748969581976214239578621816863343117433524033533838636941679300497270909696775021031004312477997130741361709262822736904340641138652359632950455651920464042448022467664596484055174270895170499076347333381222768518599018520948098943626229061996126260154604038101543546588917619576702866444998578555907070990331574722135141778182631559802154493815687284077524469331290249057291163803290619701104007028836609832847351748020354798788508790258935718399783002069490123663345156902440501507117289747695510266461539019431610123351176227443612317037899257774045751487135646052309277098939919088029284437221840182769808850184827681307611389353392683707516141736067793897378911235819049432542758429901945202632117089595899280390575706266239252841152490534353760118231918190110043319877744119083811214707593122757409240645257409097436061825613686773916466122693168971062418046703969144004779270391320645495586024342668002497155358623795942692477164489475917351003149045087283510728981096449890130735055015075557614253867698702479920619299919816768972581273507837309179450374634916567083251630203067065663910073926990517108921490442919372774170201239734064819301693527366233007925670043499415100789027665 | |
c2=18352572608055902550350386950073774530453857897248738030380007830701135570310622004368605208336922266513238134127496822199799761713782366178177809597137102612444147565578155260524747439899150012223027218489946124086276814899675563837669559795153349686434242738207425653079514376089070980797596457151965772460109519623572502109592612394316680202287712465721767341302234806130244551387296133051760893033194962691942040228545508895009195291106297581470066545991352668826197346830561010198417527057944507902143965634058848276017283478933675052993657822322866778994956205033704582047618324071045349072526540250707463112668579342537349567247810715604220690215313641329522674080146047291570752430231923566302463491877377617044768978997438596643458475128936850994934029476030136643053997549253792076260765459166618369864942681056864815996253315631930002738854235841120321870075261782250357506436825550088826469396508045912258303652912217151127280959435741419961721418428605515096160344688795655562889755165362006775317188009008288782691705879510655892181975003485714604340542378477388225736316682379616676770234557939471098919647053799313777248678455620231721202780830980063824003076308811540534492317719811588898727134190545533822501681653 | |
c3=113097822337683973761068913398570777162211043704088253732500045618770280334319497174908657828372816818344430304314992760410247741225285170975119344962728883084314382093407445567724674775086423808679124143380073906159023182353116556175251427048715466914368972746661938211846262612414049036821553068430149530397389927209475908905748728402722287875974303298260579839357610962198145974153609818939841880084892796820949226354126424023144300953584658958900737493704530725894948802258740332090822797815745616247879170037794873059391625680745994045522420168248552864215035136318711240256011217929372430302003068882829637056296413462078222453765071094277727760527662423010417144554652783429899139309180017349156600053882338180319473460877576898373222480215735280046214925463242092830060830764299787309912687294672319845054775281463150375545716818434962456139485501224661520991156961587158843064393883274763714930309353593180897123378717852182761518709151878662808890356934477932099818218743384674756674800089177733447066489275506387382342429495897972218764782517198727316942685748481956118012927027254979181519862451112593068440686462293151078537886822555211870303467014484443432209106264020502334805536091587252238173816637270028678636848763 | |
''' |
就完全是这篇论文的复现了 New attacks on RSA with Moduli N = p^rq[6]
注意第一和第二种攻击中,用 CopperSmith 解小根就可以得到相应的未知数
# exp
from Crypto.Util.number import * | |
from gmpy2 import * | |
from sage import * | |
# solve m1, m2 | |
def solve_m1_m2(): | |
n11 = 801049932940568005269978912396585741498810389425615966036828877784238116634177290247194019425111606811005728521368879065336038221361037062407029836155148874719789714345603547779284558101833801155509762818376470874215789574939002212274399950433269775325144015468620263028557804618774240232988157961712628677901130814703917513004114547234375629747176834581166306552311075522669403347828095831520693563291249869832390698646691647204371133362254846234990175138047928703289833460734235302093916147489509206061923877623300596194317059884824322527532662470348274079800781120104946546063500763852622187404608639542858285661288293918912184354236687975919510300221932074135531028314170475917110204254042336116619335841213418990605590620842511615815443114612333881430920769002933370887494558640833005339906706603497809846863863967391543647049224309556936909768179259581851520214669904560467640473144481633920438487615788689262961741053146610554997224861331949716721056553499531186695425439163222802917813140266513735841447717418846360096652592844940362932171019143434080184728093326143821165097895058935372215708948088248596585127475770021962501262915274497478428868130455122612016408381607561200802267038869516896665387576895570245272035575637 | |
n12 = 635401970340205725139325006504978344512744926958688031423448003992072769931808217486709574151492230879374574313457662436423263437792389711379687512056391117410807565492548718691166183372633151644917135272259770997096195518489056319350258673723095417922153182423913759272893696867426193704479752772511081457729513843682588951499551132432923147997238597538055902932123792252593514225328196541483451747314048080824405530742533473914329294346486691684904100406972073037050089861816604505650042953778360621934380815999541183067585498606053857125775979915077329566722531830089714823979965934190338538564188253271016367299890015449611141166780048763403252309160517164569110740561584100839212138661881615351382946813818078899882595313362934594951895560189003438775450675343590147821186953526262224973333962454561275321925151619178204499342339749637758100126893330994252902926509705617882239610380420830791088907378397226817514095468815228186716220057075095711894070032344613244803934541318573847029365563159918970404057137270884587905766828750387753130065274147902379993224780149663600462492281891320702134153853359393588902750423972068679293373333869389393970353760507436913233657422185531482023237384247535554666481760197851108297145147371 | |
e11 = 1898839980562048754607069073527844852132536432440793106124181406514770178066775988232362054809850074774981836898118651469424148725970708199461113088705044905633592578936333918328544505910996746428679299419879472444790941363558025887620570856598548320246426354974395765243741646121743413447132297230365355148066914830856904433750379114692122900723772114991199979638987571559860550883470977246459523068862898859694461427148626628283198896659337135438506574799585378178678790308410266713256003479022699264568844505977513537013529212961573269494683740987283682608189406719573301573662696753903050991812884192192569737274321828986847640839813424701894578472933385727757445011291134961124822612239865 | |
e12 = 1262647419018930022617189608995712260095623047273893811529510754596636390255564988827821761126917976430978175522450277907063247981106405519094560616378241247111698915199999363948015703788616554657275147338766805289909261129165025156078136718573006479030827585347458143645738353716189131209398056741864848486818076440355778886993462012533397208330925057305502653219173629466948635110352752162442552541812665607516753186595817376029707777599029040724727499952161261179707271814405907165207904499722122779096230563548011491932378429654764486855147873135769116637484240454596231092684424572258119768093562747249251518965380465994055049411715353547147466711949391814550591591830515262296556050946881 | |
c11 = 18979511327426975645936984732782737165217332092805655747550406443960209507493506811471688957217003792679188427155591583024966608843371190136274378868083075515877811693937328204553788450031542610082653080302874606750443090466407543829279067099563572849101374714795279414177737277837595409805721290786607138569322435729584574023597293220443351227559400618351504654781318871214405850541820427562291662456382362148698864044961814456827646881685994720468255382299912036854657082505810206237294593538092338544641919051145900715456411365065867357857347860000894624247098719102875782712030938806816332901861114078070638796157513248160442185781635520426230183818695937457557248160135402734489627723104008584934936245208116232179751448263136309595931691285743580695792601141363221346329077184688857290503770641398917586422369221744736905117499140140651493031622040723274355292502182795605723573863581253354922291984335841915632076694172921289489383700174864888664946302588049384130628381766560976143458735712162489811693014419190718601945154153130272620025118408017441490090252674737105557818759190934585829634273698371996797545908125156282869589331913665938038870431655063063535672001112420959158339261862052308986374193671007982914711432579 | |
c12 = 336587005671304527566745948355290412636261748969581976214239578621816863343117433524033533838636941679300497270909696775021031004312477997130741361709262822736904340641138652359632950455651920464042448022467664596484055174270895170499076347333381222768518599018520948098943626229061996126260154604038101543546588917619576702866444998578555907070990331574722135141778182631559802154493815687284077524469331290249057291163803290619701104007028836609832847351748020354798788508790258935718399783002069490123663345156902440501507117289747695510266461539019431610123351176227443612317037899257774045751487135646052309277098939919088029284437221840182769808850184827681307611389353392683707516141736067793897378911235819049432542758429901945202632117089595899280390575706266239252841152490534353760118231918190110043319877744119083811214707593122757409240645257409097436061825613686773916466122693168971062418046703969144004779270391320645495586024342668002497155358623795942692477164489475917351003149045087283510728981096449890130735055015075557614253867698702479920619299919816768972581273507837309179450374634916567083251630203067065663910073926990517108921490442919372774170201239734064819301693527366233007925670043499415100789027665 | |
for _ in sub_fraction(n11, n12): | |
q11, q12 = _[0], _[1] | |
if n11 % q11 == 0 and q12 != 1: | |
p11 = iroot(n11 // q11, 2)[0] | |
p12 = iroot(n12 // q12, 2)[0] | |
assert p11 ** 2 * q11 == n11 | |
assert p12 ** 2 * q12 == n12 | |
phi1 = p11 * (p11 - 1) * (q11 - 1) | |
phi2 = p12 * (p12 - 1) * (q12 - 1) | |
d1 = invert(e11, phi1) | |
d2 = invert(e12, phi2) | |
return pow(c11, d1, n11), pow(c12, d2, n12) | |
# solve b | |
def solve_b(): | |
n2 = 209798341155088334158217087474227805455138848036904381404809759100627849272231840321985747935471287990313456209656625928356468120896887536235496490078123448217785939608443507649096688546074968476040552137270080120417769906047001451239544719039212180059396791491281787790213953488743488306241516010351179070869410418232801398578982244984544906579574766534671056023774009163991804748763929626213884208260660722705479782932001102089367261720194650874553305179520889083170973755913964440175393646890791491057655226024046525748177999422035469428780228224800114202385209306803288475439775037067014297973202621118959024226798935588827359265962780792266516120013602384766460619793738405476219362508944225007365127768741191310079985425349292613888185378948854602285379329682053663283534930182589905986063348509703027498270111412063194971956202729807710253369312175636837558252924035002153389909587349043986253518050303628071319876207392440085675892353421232158925122721273720564784886530611286461575045181073744696415657043278123662980166364494583141297996445429477446442693717498789391918530672770193730629928408766563592081857706608049076318165712479742423149330311238462044666384622153280310696667586565906758451118241914402257039981388209 | |
e2 = 65537 | |
c2 = 18352572608055902550350386950073774530453857897248738030380007830701135570310622004368605208336922266513238134127496822199799761713782366178177809597137102612444147565578155260524747439899150012223027218489946124086276814899675563837669559795153349686434242738207425653079514376089070980797596457151965772460109519623572502109592612394316680202287712465721767341302234806130244551387296133051760893033194962691942040228545508895009195291106297581470066545991352668826197346830561010198417527057944507902143965634058848276017283478933675052993657822322866778994956205033704582047618324071045349072526540250707463112668579342537349567247810715604220690215313641329522674080146047291570752430231923566302463491877377617044768978997438596643458475128936850994934029476030136643053997549253792076260765459166618369864942681056864815996253315631930002738854235841120321870075261782250357506436825550088826469396508045912258303652912217151127280959435741419961721418428605515096160344688795655562889755165362006775317188009008288782691705879510655892181975003485714604340542378477388225736316682379616676770234557939471098919647053799313777248678455620231721202780830980063824003076308811540534492317719811588898727134190545533822501681653 | |
m1, m2 = solve_m1_m2() | |
PR.<x> = PolynomialRing(Zmod(n2)) | |
f = m1 * m2 * x - (m2 - m1) | |
f = f.monic() | |
root = int(f.small_roots(X=2 ^ 1000, beta=0.75)[0]) | |
p2 = gcd(int(f(root)), n2) | |
p2 = iroot(p2, 6)[0] | |
q2 = n2 // (p2 ** 7) | |
phi2 = p2 ** 6 * (p2 - 1) * (q2 - 1) | |
d2 = invert(e2, phi2) | |
return pow(c2, d2, n2) | |
# solve flag | |
n3 = 539779851369541956878655738599584730199799866957191805784596190682932284216781781433367450841202917758999300635019369629627621029957135109806205877317954671312041249493462048283611940752235036153024920172209763260723728345918562258401803973624430150143563078517485996070862532682695228590709019451174548520135142052216785774589096706631010293690859363524584240662502290912412366366114571976050857239915691266377257797199583543940504695517331512813468837128344612227973709974625418257243011036826241599265375741977853552204640800449679679351666009764297016524814036295707311913711955324055690490892097177271718850857268982130811714517356073266905474635370690445031512184247179039751734276906533177939993769044135143389748416635981226449566039039202521305851567296884751935162651063209779647359922622084851547605090230221057349511482738300221222563908357379545905837110168948295030747460300104202323692732549831403834387939156877086852393515817984772384147449841124275061609701453997579569931391166586163299940486204581696722731952467570857217406030804590055255431828403195798003509083922294733709507134156466158642941338493323430671502043066148246348074878064089651235355282144209668143249348243220714471988019011613749340243917652821 | |
e3 = 8179300978753084587812861894047395225516049110376948812109811319430275614612773726672345893359691900281432484382670047044697374818043512731533402576374645405477207239801498428774783768163880078495448747421425078521981578408638790336528372019271073712013371141939808017049399434858687299480461753638164719404612128939787055797762174745092074547412183349192156638711750872083313795551439465507724807626674514935170104573715458782366469587138508845980490673890245713729782917089910271980557159592807350504157192913530007199510144004848020221181558472160543018733124225266127379373751910439604459368078652499029070936707349862139053913745186413782066470461478961703013591655136140060879250067379283913798867648758171004535775565306842444545755351202796833177560656564652632975685912935281581268141803696686952259539945588609591385807620108279333498170028167338690235117003515264281843953984997958878272347778561933726792473981855755454522886321669676790813189668084373153897754540290867346751033567500922477317530445967753955221454744946208555394588111484610700789566547507402309549957740815535069057837915204852490930168843605732632328017129154852857227895362549146737618906180651623216848500491438142456250653458053922622240299736136335179639180898730269690699965799644757774472147210271111150769048976871249731156387939260749192370361488285775377622944817570292095201906142567403539151179209316853493906909989301225903409448461436855145 | |
c3 = 113097822337683973761068913398570777162211043704088253732500045618770280334319497174908657828372816818344430304314992760410247741225285170975119344962728883084314382093407445567724674775086423808679124143380073906159023182353116556175251427048715466914368972746661938211846262612414049036821553068430149530397389927209475908905748728402722287875974303298260579839357610962198145974153609818939841880084892796820949226354126424023144300953584658958900737493704530725894948802258740332090822797815745616247879170037794873059391625680745994045522420168248552864215035136318711240256011217929372430302003068882829637056296413462078222453765071094277727760527662423010417144554652783429899139309180017349156600053882338180319473460877576898373222480215735280046214925463242092830060830764299787309912687294672319845054775281463150375545716818434962456139485501224661520991156961587158843064393883274763714930309353593180897123378717852182761518709151878662808890356934477932099818218743384674756674800089177733447066489275506387382342429495897972218764782517198727316942685748481956118012927027254979181519862451112593068440686462293151078537886822555211870303467014484443432209106264020502334805536091587252238173816637270028678636848763 | |
b = solve_b() | |
PR.<x> = PolynomialRing(Zmod(n3)) | |
f = e3 * x - int(b) | |
f = f.monic() | |
root = int(f.small_roots(X=2 ^ 675, beta=0.75)[0]) | |
p3 = gcd(int(f(root)), n3) | |
p3 = iroot(p3, 6)[0] | |
q3 = n3 // p3 ** 7 | |
phi3 = p3 ** 6 * (p3 - 1) * (q3 - 1) | |
d3 = invert(e3, phi3) | |
m = pow(c3, d3, n3) | |
print(long_to_bytes(m)) | |
# qwb{8633ce6d-fece-4cf1-8f0f-f27e5bf6d678} |
# Reference
- A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem
- Provably Solving the Hidden Subset Sum Problem via Statistical Learning
- Provably Solving the Hidden Subset Sum Problem via Statistical Learning-ppt
- Provably Solving the Hidden Subset Sum Problem via Statistical Learning_Sage
- CVE-2022-21449
- New attacks on RSA with Moduli N = p^rq